Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 114
1.
Nat Electron ; 7(2): 168-179, 2024 Feb.
Article En | MEDLINE | ID: mdl-38433871

Approaches to quantify stress responses typically rely on subjective surveys and questionnaires. Wearable sensors can potentially be used to continuously monitor stress-relevant biomarkers. However, the biological stress response is spread across the nervous, endocrine, and immune systems, and the capabilities of current sensors are not sufficient for condition-specific stress response evaluation. Here we report an electronic skin for stress response assessment that non-invasively monitors three vital signs (pulse waveform, galvanic skin response and skin temperature) and six molecular biomarkers in human sweat (glucose, lactate, uric acid, sodium ions, potassium ions and ammonium). We develop a general approach to prepare electrochemical sensors that relies on analogous composite materials for stabilizing and conserving sensor interfaces. The resulting sensors offer long-term sweat biomarker analysis of over 100 hours with high stability. We show that the electronic skin can provide continuous multimodal physicochemical monitoring over a 24-hour period and during different daily activities. With the help of a machine learning pipeline, we also show that the platform can differentiate three stressors with an accuracy of 98.0%, and quantify psychological stress responses with a confidence level of 98.7%.

2.
Sci Adv ; 10(7): eadj7481, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38354249

Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.


Aorta , Motor Activity , Animals , Mice , Aorta/metabolism , Diet, High-Fat , Endothelium, Vascular/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
3.
ACS Nano ; 18(9): 6908-6926, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38381620

The durability of a protective immune response generated by a vaccine depends on its ability to induce long-term T cell immunity, which tends to decline in aging populations. The longest protection appears to arise from T memory stem cells (TMSCs) that confer high expandability and effector functions when challenged. Here we engineered artificial antigen presenting cells (aAPC) with optimized size, stiffness and activation signals to induce human and mouse CD8+ TMSCs in vitro. This platform was optimized as a vaccine booster of TMSCs (Vax-T) with prolonged release of small-molecule blockade of the glycogen synthase kinase-3ß together with target antigens. By using SARS-CoV-2 antigen as a model, we show that a single injection of Vax-T induces durable antigen-specific CD8+ TMSCs in young and aged mice, and generates humoral responses at a level stronger than or similar to soluble vaccines. This Vax-T approach can boost long-term immunity to fight infectious diseases, cancer, and other diseases.


CD8-Positive T-Lymphocytes , Vaccines , Mice , Humans , Animals , Immunologic Memory , Biocompatible Materials , Stem Cells
4.
Bioeng Transl Med ; 9(1): e10616, 2024 Jan.
Article En | MEDLINE | ID: mdl-38193119

The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low-density lipoprotein (oxLDL), a marker of plaque vulnerability. To this end, we developed a machine learning-directed electrochemical impedance spectroscopy (EIS) platform to analyze oxLDL-rich plaques, with immunohistology serving as the ground truth. We fabricated the EIS sensor by affixing a six-point microelectrode configuration onto a silicone balloon catheter and electroplating the surface with platinum black (PtB) to improve the charge transfer efficiency at the electrochemical interface. To demonstrate clinical translation, we deployed the EIS sensor to the coronary arteries of an explanted human heart from a patient undergoing heart transplant and interrogated the atherosclerotic lesions to reconstruct the 3D EIS profiles of oxLDL-rich atherosclerotic plaques in both right coronary and left descending coronary arteries. To establish effective generalization of our methods, we repeated the reconstruction and training process on the common carotid arteries of an unembalmed human cadaver specimen. Our findings indicated that our DenseNet model achieves the most reliable predictions for metabolically vulnerable plaque, yielding an accuracy of 92.59% after 100 epochs of training.

5.
Sci Adv ; 9(42): eadj0540, 2023 10 20.
Article En | MEDLINE | ID: mdl-37851816

The current cardiac pacemakers are battery dependent, and the pacing leads are prone to introduce valve damage and infection, plus a complete pacemaker retrieval is needed for battery replacement. Despite the reported wireless bioelectronics to pace the epicardium, open-chest surgery (thoracotomy) is required to implant the device, and the procedure is invasive, requiring prolonged wound healing and health care burden. We hereby demonstrate a fully biocompatible wireless microelectronics with a self-assembled design that can be rolled into a lightweight microtubular pacemaker for intravascular implantation and pacing. The radio frequency was used to transfer energy to the microtubular pacemaker for electrical stimulation. We show that this pacemaker provides effective pacing to restore cardiac contraction from a nonbeating heart and have the capacity to perform overdrive pacing to augment blood circulation in an anesthetized pig model. Thus, this microtubular pacemaker paves the way for the minimally invasive implantation of leadless and battery-free microelectronics.


Cardiac Pacing, Artificial , Pacemaker, Artificial , Animals , Swine , Cardiac Pacing, Artificial/methods , Prostheses and Implants , Heart , Electric Stimulation , Equipment Design , Treatment Outcome
6.
Sci Total Environ ; 902: 165947, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37543337

Ambient air pollutants, including PM2.5 (aerodynamic diameter d ~2.5 µm), PM10 (d ~10 µm), and ultrafine particles (UFP: d < 0.1 µm) impart both short- and long-term toxicity to various organs, including cardiopulmonary, central nervous, and gastrointestinal systems. While rodents have been the principal animal model to elucidate air pollution-mediated organ dysfunction, zebrafish (Danio rerio) is genetically tractable for its short husbandry and life cycle to study ambient pollutants. Its electrocardiogram (ECG) resembles that of humans, and the fluorescent reporter-labeled tissues in the zebrafish system allow for screening a host of ambient pollutants that impair cardiovascular development, organ regeneration, and gut-vascular barriers. In parallel, the high spatiotemporal resolution of light-sheet fluorescence microscopy (LSFM) enables investigators to take advantage of the transparent zebrafish embryos and genetically labeled fluorescent reporters for imaging the dynamic cardiac structure and function at a single-cell resolution. In this context, our review highlights the integrated strengths of the genetic zebrafish system and LSFM for high-resolution and high-throughput investigation of ambient pollutants-mediated cardiac and intestinal toxicity.


Air Pollutants , Air Pollution , Environmental Pollutants , Humans , Animals , Zebrafish , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/analysis , Microscopy, Fluorescence/methods , Particulate Matter/toxicity
7.
Optica ; 10(1): 62-65, 2023 Jan 20.
Article En | MEDLINE | ID: mdl-37323823

Snapshot recording of transient dynamics in three dimensions (3-D) is highly demanded in both fundamental and applied sciences. Yet it remains challenging for conventional high-speed cameras to address this need due to limited electronic bandwidth and reliance on mechanical scanning. The emergence of light field tomography (LIFT) provides a new solution to these long-standing problems and enables 3-D imaging at an unprecedented frame rate. However, based on sparse-view computed tomography, LIFT can accommodate only a limited number of projections, degrading the resolution in the reconstructed image. To alleviate this problem, we herein present a spectral encoding scheme to significantly increase the number of allowable projections in LIFT while maintaining its snapshot advantage. The resultant system can record 3-D dynamics at a kilohertz volumetric frame rate. Moreover, by using a multichannel compressed sensing algorithm, we improve the image quality with an enhanced spatial resolution and suppressed aliasing artifacts.

8.
Circ Res ; 132(10): 1405-1424, 2023 05 12.
Article En | MEDLINE | ID: mdl-37167356

SARS-CoV-2, the virus underlying COVID-19, has now been recognized to cause multiorgan disease with a systemic effect on the host. To effectively combat SARS-CoV-2 and the subsequent development of COVID-19, it is critical to detect, monitor, and model viral pathogenesis. In this review, we discuss recent advancements in microfluidics, organ-on-a-chip, and human stem cell-derived models to study SARS-CoV-2 infection in the physiological organ microenvironment, together with their limitations. Microfluidic-based detection methods have greatly enhanced the rapidity, accessibility, and sensitivity of viral detection from patient samples. Engineered organ-on-a-chip models that recapitulate in vivo physiology have been developed for many organ systems to study viral pathology. Human stem cell-derived models have been utilized not only to model viral tropism and pathogenesis in a physiologically relevant context but also to screen for effective therapeutic compounds. The combination of all these platforms, along with future advancements, may aid to identify potential targets and develop novel strategies to counteract COVID-19 pathogenesis.


COVID-19 , Humans , SARS-CoV-2 , Microfluidics , Microphysiological Systems
9.
bioRxiv ; 2023 May 03.
Article En | MEDLINE | ID: mdl-37205360

Exercise modulates vascular plasticity in multiple organ systems; however, the metabolomic transducers underlying exercise and vascular protection in the disturbed flow-prone vasculature remain under-investigated. We simulated exercise-augmented pulsatile shear stress (PSS) to mitigate flow recirculation in the lesser curvature of the aortic arch. When human aortic endothelial cells (HAECs) were subjected to PSS ( τ ave = 50 dyne·cm -2 , ∂τ/∂t = 71 dyne·cm -2 ·s -1 , 1 Hz), untargeted metabolomic analysis revealed that Stearoyl-CoA Desaturase (SCD1) in the endoplasmic reticulum (ER) catalyzed the fatty acid metabolite, oleic acid (OA), to mitigate inflammatory mediators. Following 24 hours of exercise, wild-type C57BL/6J mice developed elevated SCD1-catalyzed lipid metabolites in the plasma, including OA and palmitoleic acid (PA). Exercise over a 2-week period increased endothelial SCD1 in the ER. Exercise further modulated the time-averaged wall shear stress (TAWSS or τ ave) and oscillatory shear index (OSI ave ), upregulated Scd1 and attenuated VCAM1 expression in the disturbed flow-prone aortic arch in Ldlr -/- mice on high-fat diet but not in Ldlr -/- Scd1 EC-/- mice. Scd1 overexpression via recombinant adenovirus also mitigated ER stress. Single cell transcriptomic analysis of the mouse aorta revealed interconnection of Scd1 with mechanosensitive genes, namely Irs2 , Acox1 and Adipor2 that modulate lipid metabolism pathways. Taken together, exercise modulates PSS ( τ ave and OSI ave ) to activate SCD1 as a metabolomic transducer to ameliorate inflammation in the disturbed flow-prone vasculature.

10.
Light Sci Appl ; 12(1): 12, 2023 Jan 03.
Article En | MEDLINE | ID: mdl-36593252

Complementary to mainstream cardiac imaging modalities for preclinical research, photoacoustic computed tomography (PACT) can provide functional optical contrast with high imaging speed and resolution. However, PACT has not been demonstrated to reveal the dynamics of whole cardiac anatomy or vascular system without surgical procedure (thoracotomy) for tissue penetration. Here, we achieved non-invasive imaging of rat hearts using the recently developed three-dimensional PACT (3D-PACT) platform, demonstrating the regulated illumination and detection schemes to reduce the effects of optical attenuation and acoustic distortion through the chest wall; thereby, enabling unimpeded visualization of the cardiac anatomy and intracardiac hemodynamics following rapidly scanning the heart within 10 s. We further applied 3D-PACT to reveal distinct cardiac structural and functional changes among the healthy, hypertensive, and obese rats, with optical contrast to uncover differences in cardiac chamber size, wall thickness, and hemodynamics. Accordingly, 3D-PACT provides high imaging speed and nonionizing penetration to capture the whole heart for diagnosing the animal models, holding promises for clinical translation to cardiac imaging of human neonates.

11.
Nat Biomed Eng ; 6(11): 1225-1235, 2022 11.
Article En | MEDLINE | ID: mdl-35970928

Wearable non-invasive biosensors for the continuous monitoring of metabolites in sweat can detect a few analytes at sufficiently high concentrations, typically during vigorous exercise so as to generate sufficient quantity of the biofluid. Here we report the design and performance of a wearable electrochemical biosensor for the continuous analysis, in sweat during physical exercise and at rest, of trace levels of multiple metabolites and nutrients, including all essential amino acids and vitamins. The biosensor consists of graphene electrodes that can be repeatedly regenerated in situ, functionalized with metabolite-specific antibody-like molecularly imprinted polymers and redox-active reporter nanoparticles, and integrated with modules for iontophoresis-based sweat induction, microfluidic sweat sampling, signal processing and calibration, and wireless communication. In volunteers, the biosensor enabled the real-time monitoring of the intake of amino acids and their levels during physical exercise, as well as the assessment of the risk of metabolic syndrome (by correlating amino acid levels in serum and sweat). The monitoring of metabolites for the early identification of abnormal health conditions could facilitate applications in precision nutrition.


Biosensing Techniques , Wearable Electronic Devices , Humans , Monitoring, Physiologic , Sweat/chemistry , Nutrients
12.
Adv Mater ; 34(32): e2201772, 2022 Aug.
Article En | MEDLINE | ID: mdl-35703311

Metal patterning via additive manufacturing has been phasing-in to broad applications in many medical, electronics, aerospace, and automotive industries. While previous efforts have produced various promising metal-patterning strategies, their complexity and high cost have limited their practical application in rapid production and prototyping. Herein, a one-step gold printing technique based on anion-assisted photochemical deposition (APD), which can directly print highly conductive gold patterns (1.08 × 107 S m-1 ) under ambient conditions without post-annealing treatment, is introduced. Uniquely, the APD uses specific ion effects with projection lithography to pattern Au nanoparticles and simultaneously sinter them into tunable porous gold structures. The significant influence of kosmotropic or chaotropic anions in the precursor ink on tuning the morphologies and conductivities of the printed patterns by employing a series of different ions, including Cl- ions, in the printing process is presented. Additionally, the resistance stabilities and the electrochemical properties of the APD-printed gold patterns are carefully investigated. The high conductivity and excellent conformability of the printed Au electrodes are demonstrated with reliable performance in electrophysiological signal delivery and acquisition for biomedical applications. This work exploits the potential of photochemical-deposition-based metal patterning in flexible electronic manufacturing.

13.
Theranostics ; 12(6): 2639-2657, 2022.
Article En | MEDLINE | ID: mdl-35401811

Rationale: Macrophages are the frontline immune cells in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Angiotensin-converting enzyme 2 (ACE2) serves as the binding receptor to SARS-CoV-2 Spike glycoprotein for fusion and internalization into the human host cells. However, the mechanisms underlying SARS-CoV-2-elicited macrophage inflammatory responses remain elusive. Neutralizing SARS-CoV-2 by human ACE2 (hACE2) decoys has been proposed as a therapeutic approach to ameliorate SARS-CoV-2-stimulated inflammation. This study aims to investigate whether an engineered decoy receptor can abrogate SARS-CoV-2-induced macrophage inflammation. Methods: hACE2 was biotinylated to the surface of nano-liposomes (d = 100 nm) to generate Liposome-human ACE2 complex (Lipo-hACE2). Lentivirus expressing Spike protein (D614G) was also created as a pseudo-SARS-CoV-2 (Lenti-Spike). Liposome-hACE2 was used as a decoy receptor or competitive inhibitor to inhibit SARS-CoV-2 or Lenti-Spike-induced macrophage inflammation in vitro and in vivo. Results: Both SARS-CoV-2 and Lenti-Spike stimulated strong inflammatory responses by inducing the expression of key cytokine and chemokines, including IL-1ß, IL-6, TNFα, CCL-2, and CXCL-10, in murine and human macrophages in vitro, whereas Lipo-hACE2 decoy abolished these effects in macrophages. Furthermore, intravenous injection of Lenti-Spike led to increased macrophage and tissue inflammation in wild type mice, which was also abolished by Lipo-hACE2 treatment. Mechanistically, Spike protein stimulated macrophage inflammation by activating canonical NF-κB signaling. RNA sequencing analysis revealed that Lenti-Spike induced over 2,000 differentially expressed genes (DEGs) in murine macrophages, but deficiency of IκB kinase ß (IKKß), a key regulator for NF-κB activation, abrogated Lenti-Spike-elicited macrophage inflammatory responses. Conclusions: We demonstrated that the engineered Lipo-hACE2 acts as a molecular decoy to neutralize SARS-CoV-2 or Spike protein-induced inflammation in both murine and human macrophages, and activation of the canonical IKKß/NF-κB signaling is essential for SARS-CoV-2-elicited macrophage inflammatory responses.


COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Animals , Humans , I-kappa B Kinase , Inflammation , Liposomes , Macrophages/metabolism , Mice , NF-kappa B/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
14.
Front Cardiovasc Med ; 9: 841101, 2022.
Article En | MEDLINE | ID: mdl-35369301

Mechano-responsive signaling pathways enable blood vessels within a connected network to structurally adapt to partition of blood flow between organ systems. Wall shear stress (WSS) modulates endothelial cell proliferation and arteriovenous specification. Here, we study vascular regeneration in a zebrafish model by using tail amputation to disrupt the embryonic circulatory loop (ECL) at 3 days post fertilization (dpf). We observed a local increase in blood flow and peak WSS in the Segmental Artery (SeA) immediately adjacent to the amputation site. By manipulating blood flow and WSS via changes in blood viscosity and myocardial contractility, we show that the angiogenic Notch-ephrinb2 cascade is hemodynamically activated in the SeA to guide arteriogenesis and network reconnection. Taken together, ECL amputation induces changes in microvascular topology to partition blood flow and increase WSS-mediated Notch-ephrinb2 pathway, promoting new vascular arterial loop formation and restoring microcirculation.

15.
J R Soc Interface ; 19(187): 20210898, 2022 02.
Article En | MEDLINE | ID: mdl-35167770

Wall shear stress (WSS) contributes to the mechanotransduction underlying microvascular development and regeneration. Using computational fluid dynamics, we elucidated the interplay between WSS and vascular remodelling in a zebrafish model of tail amputation and regeneration. The transgenic Tg (fli1:eGFP; Gata1:ds-red) zebrafish line was used to track the three-dimensional fluorescently labelled vascular endothelium for post-image segmentation and reconstruction of the fluid domain. Particle image velocimetry was used to validate the blood flow. Following amputation to the dorsal aorta and posterior cardinal vein (PCV), vasoconstriction developed in the dorsal longitudinal anastomotic vessel (DLAV) along with increased WSS in the proximal segmental vessels (SVs) from amputation. Angiogenesis ensued at the tips of the amputated DLAV and PCV where WSS was minimal. At 2 days post amputation (dpa), vasodilation occurred in a pair of SVs proximal to amputation, followed by increased blood flow and WSS; however, in the SVs distal to amputation, WSS normalized to the baseline. At 3 dpa, the blood flow increased in the arterial SV proximal to amputation and through anastomosis with DLAV formed a loop with PCV. Thus, our in silico modelling revealed the interplay between WSS and microvascular adaptation to changes in WSS and blood flow to restore microcirculation following tail amputation.


Mechanotransduction, Cellular , Zebrafish , Amputation, Surgical , Animals , Blood Flow Velocity , Hemodynamics , Shear Strength , Stress, Mechanical
16.
IEEE Trans Biomed Eng ; 69(2): 734-745, 2022 02.
Article En | MEDLINE | ID: mdl-34383642

OBJECTIVE: Atherosclerosis is a chronic immuno-inflammatory condition emerging in arteries and considered the cause of a myriad of cardiovascular diseases. Atherosclerotic lesion characterization through invasive imaging modalities is essential in disease evaluation and determining intervention strategy. Recently, electrical properties of the lesions have been utilized in assessing its vulnerability mainly owing to its capability to differentiate lipid content existing in the lesion, albeit with limited detection resolution. Electrical impedance tomography is the natural extension of conventional spectrometric measurement by incorporating larger number of interrogating electrodes and advanced algorithm to achieve imaging of target objects and thus provides significantly richer information. It is within this context that we develop Outward Electrical Impedance Tomography (OEIT), aimed at intravascular imaging for atherosclerotic lesion characterization. METHODS: We utilized flexible electronics to establish the 32-electrode OEIT device with outward facing configuration suitable for imaging of vessels. We conducted comprehensive studies through simulation model and ex vivo setup to demonstrate the functionality of OEIT. RESULTS: Quantitative characterization for OEIT regarding its proximity sensing and conductivity differentiation was achieved using well-controlled experimental conditions. Imaging capability for OEIT was further verified with phantom setup using porcine aorta to emulate in vivo environment. CONCLUSION: We have successfully demonstrated a novel tool for intravascular imaging, OEIT, with unique advantages for atherosclerosis detection. SIGNIFICANCE: This study demonstrates for the first time a novel electrical tomography-based platform for intravascular imaging, and we believe it paves the way for further adaptation of OEIT for intravascular detection in more translational settings and offers great potential as an alternative imaging tool for medical diagnosis.


Atherosclerosis , Tomography , Animals , Electric Impedance , Phantoms, Imaging , Swine , Tomography/methods , Tomography, X-Ray Computed
17.
Cardiovasc Drugs Ther ; 36(2): 201-215, 2022 04.
Article En | MEDLINE | ID: mdl-33459922

PURPOSE: HIV infection is consistently associated with an increased risk of atherosclerotic cardiovascular disease, but the underlying mechanisms remain elusive. HIV protein Tat, a transcriptional activator of HIV, has been shown to activate NF-κB signaling and promote inflammation in vitro. However, the atherogenic effects of HIV Tat have not been investigated in vivo. Macrophages are one of the major cell types involved in the initiation and progression of atherosclerosis. We and others have previously revealed the important role of IκB kinase ß (IKKß), a central inflammatory coordinator through activating NF-κB, in the regulation of macrophage functions and atherogenesis. This study investigated the impact of HIV Tat exposure on macrophage functions and atherogenesis. METHODS: To investigate the effects of Tat on macrophage IKKß activation and atherosclerosis development in vivo, myeloid-specific IKKß-deficient LDLR-deficient (IKKßΔMyeLDLR-/-) mice and their control littermates (IKKßF/FLDLR-/-) were exposed to recombinant HIV protein Tat. RESULTS: Exposure to Tat significantly increased atherosclerotic lesion size and plaque vulnerability in IKKßF/FLDLR-/- but not IKKßΔMyeLDLR-/- mice. Deficiency of myeloid IKKß attenuated Tat-elicited macrophage inflammatory responses and atherosclerotic lesional inflammation in IKKßΔMyeLDLR-/- mice. Further, RNAseq analysis demonstrated that HIV protein Tat affects the expression of many atherosclerosis-related genes in vitro in an IKKß-dependent manner. CONCLUSIONS: Our findings reveal atherogenic effects of HIV protein Tat in vivo and demonstrate a pivotal role of myeloid IKKß in Tat-driven atherogenesis.


Atherosclerosis , HIV Infections , Animals , Atherosclerosis/metabolism , HIV Infections/complications , HIV Infections/metabolism , HIV Infections/pathology , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Inflammation/metabolism , Lipoproteins, LDL , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Protein Serine-Threonine Kinases , Receptors, LDL/metabolism
18.
Sci Rep ; 11(1): 19859, 2021 10 06.
Article En | MEDLINE | ID: mdl-34615918

Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of cardiometabolic diseases in overweight individuals. While liver biopsy is the current gold standard to diagnose NAFLD and magnetic resonance imaging (MRI) is a non-invasive alternative still under clinical trials, the former is invasive and the latter costly. We demonstrate electrical impedance tomography (EIT) as a portable method for detecting fatty infiltrate. We enrolled 19 overweight subjects to undergo liver MRI scans, followed by EIT measurements. The MRI images provided the a priori knowledge of the liver boundary conditions for EIT reconstruction, and the multi-echo MRI data quantified liver proton-density fat fraction (PDFF%) to validate fat infiltrate. Using the EIT electrode belts, we circumferentially injected pairwise current to the upper abdomen, followed by acquiring the resulting surface-voltage to reconstruct the liver conductivity. Pearson's correlation analyses compared EIT conductivity or MRI PDFF with body mass index, age, waist circumference, height, and weight variables. We reveal that the correlation between liver EIT conductivity or MRI PDFF with demographics is statistically insignificant, whereas liver EIT conductivity is inversely correlated with MRI PDFF (R = -0.69, p = 0.003, n = 16). As a pilot study, EIT conductivity provides a portable method for operator-independent and cost-effective detection of hepatic steatosis.


Electric Impedance , Fatty Liver/diagnostic imaging , Fatty Liver/pathology , Overweight/pathology , Tomography/methods , Adult , Aged , Algorithms , Biomarkers , Biopsy , Body Weights and Measures , Disease Management , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Male , Middle Aged , Reproducibility of Results , Risk Factors , Sensitivity and Specificity
19.
Adv Sci (Weinh) ; 8(23): e2103266, 2021 12.
Article En | MEDLINE | ID: mdl-34687279

Activation of endothelial cells following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is thought to be the primary driver for the increasingly recognized thrombotic complications in coronavirus disease 2019 patients, potentially due to the SARS-CoV-2 Spike protein binding to the human angiotensin-converting enzyme 2 (hACE2). Vaccination therapies use the same Spike sequence or protein to boost host immune response as a protective mechanism against SARS-CoV-2 infection. As a result, cases of thrombotic events are reported following vaccination. Although vaccines are generally considered safe, due to genetic heterogeneity, age, or the presence of comorbidities in the population worldwide, the prediction of severe adverse outcome in patients remains a challenge. To elucidate Spike proteins underlying patient-specific-vascular thrombosis, the human microcirculation environment is recapitulated using a novel microfluidic platform coated with human endothelial cells and exposed to patient specific whole blood. Here, the blood coagulation effect is tested after exposure to Spike protein in nanoparticles and Spike variant D614G in viral vectors and the results are corroborated using live SARS-CoV-2. Of note, two potential strategies are also examined to reduce blood clot formation, by using nanoliposome-hACE2 and anti-Interleukin (IL) 6 antibodies.


Blood Coagulation/physiology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies/chemistry , Antibodies/immunology , Antibodies/metabolism , COVID-19/diagnosis , COVID-19/virology , Endothelial Cells/chemistry , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fibrin/chemistry , Fibrin/metabolism , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Interleukin-6/immunology , Liposomes/chemistry , Microfluidics/methods , Mutation , Nanoparticles/chemistry , Platelet Aggregation , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/genetics
20.
Curr Top Membr ; 87: 131-151, 2021.
Article En | MEDLINE | ID: mdl-34696883

Living cells are exposed to multiple mechanical stimuli from the extracellular matrix or from surrounding cells. Mechanoreceptors are molecules that display status changes in response to mechanical stimulation, transforming physical cues into biological responses to help the cells adapt to dynamic changes of the microenvironment. Mechanical stimuli are responsible for shaping the tridimensional development and patterning of the organs in early embryonic stages. The development of the heart is one of the first morphogenetic events that occur in embryos. As the circulation is established, the vascular system is exposed to constant shear stress, which is the force created by the movement of blood. Both spatial and temporal variations in shear stress differentially modulate critical steps in heart development, such as trabeculation and compaction of the ventricular wall and the formation of the heart valves. Zebrafish embryos are small, transparent, have a short developmental period and allow for real-time visualization of a variety of fluorescently labeled proteins to recapitulate developmental dynamics. In this review, we will highlight the application of zebrafish models as a genetically tractable model for investigating cardiovascular development and regeneration. We will introduce our approaches to manipulate mechanical forces during critical stages of zebrafish heart development and in a model of vascular regeneration, as well as advances in imaging technologies to capture these processes at high resolution. Finally, we will discuss the role of molecules of the Plexin family and Piezo cation channels as major mechanosensors recently implicated in cardiac morphogenesis.


Mechanotransduction, Cellular , Zebrafish , Animals , Models, Animal , Morphogenesis , Stress, Mechanical
...